Robotic therapy in upper limb rehabilitation: medical, scientific, social and economic implications

Authors

  • Marcia Sandra Hernández Zayas Hospital General “Dr. Juan Bruno Zayas” Santiago de Cuba, Cuba
  • Jorge Bonzon Regalado Universidad de Oriente. Santiago de Cuba, Cuba
  • Roberto Sagaró Zamora Universidad de Oriente. Santiago de Cuba, Cuba
  • Mauricio Torres Quesada MT Engineering SAS, Bogotá, D.C, Colombia

Keywords:

upper limb; exoskeleton; robotic therapy; physiotherapy; rehabilitation.

Abstract

The application of the robotic therapy with controlled motor parameters, it conditions biomechanical and clinical variables that allow a greater scope in the rehabilitation of the upper limb. To analyze the current state of knowledge regarding robotic therapy in upper limb rehabilitation and its medical, scientific, social, and economic implications. A systematic review was conducted of randomized and non - randomized clinical studies, pilot studies, completion theses and textbooks, reviews and meta-analyses concerning the upper limb rehabilitation. The search strategy was developed by accessing libraries of medical journals indexed in the following databases PubMed/Medline, Scopus, Cochrane Library, Scielo y Lilacs, EmCare, Phisiotherapy Evidence Database (PEDro) using Scopus and Science Citation Index o WoS search engines and the tools Power Query, Scrapy Python; from 2017 to 2024, in English and Spanish. The terms upper limb, exoskeleton, robotic therapy, physiotherapy, rehabilitation, were used and combined. For a more precise search, the filters type of work (“article”), discipline (“biomedic sciences” and “medicine”) were activated. A total of 120 manuscripts met these criteria. 43 were eligible and duplicate studies and case reports were discarded. 60 did not fit the topic. Studies are needed to further validate robotic therapy and increase evidence of its potential.

Downloads

Download data is not yet available.

References

Aibek Niyetkaliyev. (2024). Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation [Data set]. https://ro.uow.edu.au/articles/thesis/Robot_Assisted_Shoulder_Rehabilitation_Biomechanical_Modelling_Design_and_Performance_Evaluation/27669114

Alguacil-Diego, I.-M., Cuesta-Gómez, A., Contreras-González, A.-F., Pont-Esteban, D., Cantalejo-Escobar, D., Sánchez-Urán, M. Á., & Ferre, M. (2021). Validation of a Hybrid Exoskeleton for Upper Limb Rehabilitation. A Preliminary Study. Sensors, 21(21), Article 21. https://doi.org/10.3390/s21217342

Aprile, I., Germanotta, M., Cruciani, A., Loreti, S., Pecchioli, C., Cecchi, F., Montesano, A., Galeri, S., Diverio, M., Falsini, C., Speranza, G., Langone, E., Papadopoulou, D., Padua, L., & Carrozza, M. C. (2020). Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. Journal of Neurologic Physical Therapy, 44(1). https://journals.lww.com/jnpt/fulltext/2020/01000/upper_limb_robotic_rehabilitation_after_stroke__a.2.aspx

Bermúdez, M. D.-C. (2022). Gestión de Gobierno basada en ciencia e innovación: avances y desafíos. Anales de la Academia de Ciencias de Cuba, 12(2), 1235.

Bhagat, N., Yozbatiran, N., Sullivan, J. L., Paranjape, R., Losey, C., Hernandez, Z., Keser, Z., Grossman, R., Francisco, G., O’Malley, M. K., & Contreras-Vidal, J. (2020). A clinical trial to study changes in neural activity and motor recovery following brain-machine interface enabled robot-assisted stroke rehabilitation. medRxiv, 2020.04.26.20077529. https://doi.org/10.1101/2020.04.26.20077529

Buccelli, S., Tessari, F., Fanin, F., De Guglielmo, L., Capitta, G., Piezzo, C., Bruschi, A., Van Son, F., Scarpetta, S., Succi, A., Rossi, P., Maludrottu, S., Barresi, G., Creatini, I., Taglione, E., Laffranchi, M., & De Michieli, L. (2022). A Gravity-Compensated Upper-Limb Exoskeleton for Functional Rehabilitation of the Shoulder Complex. Applied Sciences, 12(7). https://doi.org/10.3390/app12073364

Budhota, A., Chua, K. S. G., Hussain, A., Kager, S., Cherpin, A., Contu, S., Vishwanath, D., Kuah, C. W. K., Ng, C. Y., Yam, L. H. L., Loh, Y. J., Rajeswaran, D. K., Xiang, L., Burdet, E., & Campolo, D. (2021). Robotic Assisted Upper Limb Training Post Stroke: A Randomized Control Trial Using Combinatory Approach Toward Reducing Workforce Demands. Frontiers in Neurology, 12. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.622014

C. He, C. -H. Xiong, Z. -J. Chen, W. Fan, X. -L. Huang, & C. Fu. (2021). Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1795–1805. https://doi.org/10.1109/TNSRE.2021.3107376

Carpinella, I., Lencioni, T., Bowman, T., Bertoni, R., Turolla, A., Ferrarin, M., & Jonsdottir, J. (2020). Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 17(1), 10. https://doi.org/10.1186/s12984-020-0646-1

Chen, J., Black, I., Nichols, D., Chen, T., Sandison, M., Casas, R., & Lum, P. (2020). Clinical Trial of HEXORR II for Robotic Hand Movement Therapy After Stroke. Research Square. https://doi.org/10.21203/rs.3.rs-74894/v1

Chen, Z., Wang, C., Fan, W., Gu, M., Yasin, G., Xiao, S., Huang, J., & Huang, X. (2020). Robot-Assisted Arm Training versus Therapist-Mediated Training after Stroke: A Systematic Review and Meta-Analysis. Journal of Healthcare Engineering, 2020(1), 8810867. https://doi.org/10.1155/2020/8810867

Chen, Z.-J., Gu, M.-H., He, C., Xiong, C.-H., Xu, J., & Huang, X.-L. (2021). Robot-Assisted Arm Training in Stroke Individuals With Unilateral Spatial Neglect: A Pilot Study. Frontiers in Neurology, 12. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.691444

Chinmay, B., & Pratik, P. (2022). Robotic and sensor technology for frozen shoulder Rehabilitation. Journal of Pharmaceutical Negative Results, 2970–2974. https://doi.org/10.47750/pnr.2022.13.S06.394

Dalla Gasperina, S., Roveda, L., Pedrocchi, A., Braghin, F., & Gandolla, M. (2021). Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons. Frontiers in Robotics and AI, 8. https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.745018

Dehem, S., Gilliaux, M., Stoquart, G., Detrembleur, C., Jacquemin, G., Palumbo, S., Frederick, A., & Lejeune, T. (2019). Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: A single-blind, randomised, controlled trial. Annals of Physical and Rehabilitation Medicine, 62(5), 313–320. https://doi.org/10.1016/j.rehab.2019.04.002

E. -Y. Chia, Y. -L. Chen, T. -C. Chien, M. -L. Chiang, L. -C. Fu, J. -S. Lai, & L. Lu. (2020). Velocity Field based Active-Assistive Control for Upper Limb Rehabilitation Exoskeleton Robot. 2020 IEEE International Conference on Robotics and Automation (ICRA), 1742–1748. https://doi.org/10.1109/ICRA40945.2020.9196766

Frisoli, A., Barsotti, M., Sotgiu, E., Lamola, G., Procopio, C., & Chisari, C. (2022). A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 19(1), 14. https://doi.org/10.1186/s12984-022-00991-y

Gallagher, J. F., Sivan, M., & Levesley, M. (2022). Making Best Use of Home-Based Rehabilitation Robots. Applied Sciences, 12(4). https://doi.org/10.3390/app12041996

García Tapia*, R. (2020). Influencia de la posición del terapeuta durante el aprendizaje motor por observación de la acción. Estudio piloto: Influence of the therapist’s position during motor learning by observing the action. Pilot study. Revista Terapia Ocupacional Galicia, 17(1), 18–25.

Garlet, A. B., Plentz, R. D. M., Blauth, A. H. E. G., Righi, T. T., Righi, N. C., & Schardong, J. (2022). Reabilitação robótica em pacientes com AVC: protocolo de ensaio clínico randomizado. Fisioterapia e Pesquisa, 28, 483–490. https://doi.org/10.1590/1809-2950/21020028042021

Georgarakis, A.-M., Zimmermann, Y., Wolf, P., Hutter, M., & Riener, R. (2022). Supporting and Stabilizing the Scapulohumeral Rhythm with a Body- or Robot-Powered Orthosis. IEEE Transactions on Medical Robotics and Bionics, 4(3), 729–743. https://doi.org/10.1109/TMRB.2022.3176728

Hamaya, M., Matsubara, T., Noda, T., Teramae, T., & Morimoto, J. (2017). Learning assistive strategies for exoskeleton robots from user-robot physical interaction. User Profiling and Behavior Adaptation for Human-Robot Interaction, 99, 67–76. https://doi.org/10.1016/j.patrec.2017.04.007

Hernández Zayas, M., Bonzon Regalado, J., Montoya Pedrón, A. y Sagaró Zamora, R. (2024). Capsulitis adhesiva del hombro: Aspectos clínicos y rehabilitadores. Arrancada, 24(2), 358-371. https://arrancada.cuaje.edu.cu

Hussein Mohammed Al-Almoodi, H., Zainul Azlan, N., Shahdad, I., & Kamarudzaman, N. (2021). Continuous Passive Motion Machine for Elbow Rehabilitation. International Journal of Robotics and Control Systems; Vol 1, No 3 (2021). https://doi.org/10.31763/ijrcs.v1i3.446

Keeling, A. B., Piitz, M., Semrau, J. A., Hill, M. D., Scott, S. H., & Dukelow, S. P. (2021). Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. Journal of NeuroEngineering and Rehabilitation, 18(1), 10. https://doi.org/10.1186/s12984-021-00804-8

Kim, M.-S., Kim, S. H., Noh, S.-E., Bang, H. J., & Lee, K.-M. (2019). Robotic-Assisted Shoulder Rehabilitation Therapy Effectively Improved Poststroke Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 100(6), 1015–1022. https://doi.org/10.1016/j.apmr.2019.02.003

Lauretti, C., Cordella, F., Ciancio, A. L., Trigili, E., Catalan, J. M., Badesa, F. J., Crea, S., Pagliara, S. M., Sterzi, S., Vitiello, N., Garcia Aracil, N., & Zollo, L. (2018). Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons. Frontiers in Neurorobotics, 12. https://doi.org/10.3389/fnbot.2018.00005

Lin, Y., Qu, Q., Lin, Y., He, J., Zhang, Q., Wang, C., Jiang, Z., Guo, F., & Jia, J. (2021). Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. BioMed Research International, 2021(1), 9972560. https://doi.org/10.1155/2021/9972560

Major, Z. Z., Vaida, C., Major, K. A., Tucan, P., Brusturean, E., Gherman, B., Birlescu, I., Craciunaș, R., Ulinici, I., Simori, G., Banica, A., Pop, N., Burz, A., Carbone, G., & Pisla, D. (2021). Comparative Assessment of Robotic versus Classical Physical Therapy Using Muscle Strength and Ranges of Motion Testing in Neurological Diseases. Journal of Personalized Medicine, 11(10). https://doi.org/10.3390/jpm11100953

Major, Z. Z., Vaida, C., Major, K. A., Tucan, P., Simori, G., Banica, A., Brusturean, E., Burz, A., Craciunas, R., Ulinici, I., Carbone, G., Gherman, B., Birlescu, I., & Pisla, D. (2020). The Impact of Robotic Rehabilitation on the Motor System in Neurological Diseases. A Multimodal Neurophysiological Approach. International Journal of Environmental Research and Public Health, 17(18). https://doi.org/10.3390/ijerph17186557

Nguiadem, C., Raison, M., & Achiche, S. (2020). Motion Planning of Upper-Limb Exoskeleton Robots: A Review. Applied Sciences, 10(21). https://doi.org/10.3390/app10217626

Oña, E. D., Garcia-Haro, J. M., Jardón, A., & Balaguer, C. (2019). Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs. Applied Sciences, 9(13). https://doi.org/10.3390/app9132586

Palazzi, E., Luzi, L., Dimo, E., Meneghetti, M., Vicario, R., Luzia, R. F., Vertechy, R., & Calanca, A. (2022). An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications. Technologies, 10(1). https://doi.org/10.3390/technologies10010022

Qassim, H. M., & Wan Hasan, W. Z. (2020). A Review on Upper Limb Rehabilitation Robots. Applied Sciences, 10(19). https://doi.org/10.3390/app10196976

Righi, M., Magrini, M., Dolciotti, C., & Moroni, D. (2021). A System for Neuromotor Based Rehabilitation on a Passive Robotic Aid. Sensors, 21(9). https://doi.org/10.3390/s21093130

Righi, M., Magrini, M., Dolciotti, C., & Moroni, D. (2022). A Case Study of Upper Limb Robotic-Assisted Therapy Using the Track-Hold Device. Sensors, 22(3). https://doi.org/10.3390/s22031009

Robótica y automática en la escuela cubana. (2020, February 17). Cuba Si. http://www.cubasi.cu/es/cubasi-noticias-cuba-mundo-ultima-hora/item/104599-robotica-y-automatica-en-la-escuela-cubana

Sagaro Zamora, R. M., Zayas, Hernández, S., Marcia, Quezada, M., & Bonzon Regalado, J. (2023). Robotic Therapy and Transcutaneous Electrical Stimulation in the Painful Shoulder Treatment of Hemiplegic Patients. Revista Cubana de Medicina; Vol. 62, No. 2 (2023): Abril-Junio, 62, e3125.

Serrezuela, R. R., Quezada, M. T., Zayas, M. H., Pedrón, A. M., Hermosilla, D. M., & Zamora, R. S. (2020). Robotic therapy for the hemiplegic shoulder pain: a pilot study. Journal of NeuroEngineering and Rehabilitation, 17(1), 54. https://doi.org/10.1186/s12984-020-00674-6

Takebayashi, T., Takahashi, K., Okita, Y., Kubo, H., Hachisuka, K., & Domen, K. (2022). Impact of the robotic-assistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: sub-analysis of a randomized clinical trial. Journal of NeuroEngineering and Rehabilitation, 19(1), 25. https://doi.org/10.1186/s12984-022-00986-9

Terranova, T. T., Simis, M., Santos, A. C. A., Alfieri, F. M., Imamura, M., Fregni, F., & Battistella, L. R. (2021). Robot-Assisted Therapy and Constraint-Induced Movement Therapy for Motor Recovery in Stroke: Results From a Randomized Clinical Trial. Frontiers in Neurorobotics, 15. https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.684019

Veerbeek, J. M., Langbroek-Amersfoort, A. C., van Wegen, E. E. H., Meskers, C. G. M., & Kwakkel, G. (2017). Effects of Robot-Assisted Therapy for the Upper Limb After Stroke: A Systematic Review and Meta-analysis. Neurorehabilitation and Neural Repair, 31(2), 107–121. https://doi.org/10.1177/1545968316666957

Wu, C.-J., Ting, H., Lin, C.-C., Chen, Y.-C., Chao, M.-C., & Lee, S.-D. (2021). Efficacy of Joint Mobilization Apparatus in Treating Frozen Shoulder. Applied Sciences, 11(9), Article 9. https://doi.org/10.3390/app11094184

Zhang, Y., Liu, X., Qiao, X., & Fan, Y. (2022). Trending Topics in Research on Rehabilitation Robots during the Last Two Decades: A Bibliometric Analysis. Machines, 10(11). https://doi.org/10.3390/machines10111061

Published

2025-05-22

How to Cite

Hernández Zayas, M. S., Bonzon Regalado, J., Sagaró Zamora, R., & Torres Quesada, M. (2025). Robotic therapy in upper limb rehabilitation: medical, scientific, social and economic implications. Arrancada, 25(51), 11–28. Retrieved from https://revistarrancada.cujae.edu.cu/index.php/arrancada/article/view/748

Issue

Section

Contenido

Most read articles by the same author(s)