Terapia robótica en la rehabilitación de la extremidad superior: implicaciones médicas, científicas, sociales y económicas
Palabras clave:
extremidad superior; exoesqueleto; terapia robótica; fisioterapia, rehabilitación.Resumen
La aplicación de la terapia robótica con parámetros motrices controlados, condiciona variables biomecánicas y clínicas que permiten un mayor alcance en la rehabilitación de la extremidad superior. El objetivo. Analizar el estado actual del conocimiento sobre terapia robótica en la rehabilitación de la extremidad superior y sus implicaciones médicas, científicas, sociales y económicas. Se realizó una revisión sistemática de estudios clínicos aleatorizados y no aleatorizados, estudios piloto, tesis de terminación de estudios y libros de textos, revisiones y metaanálisis referidos a la rehabilitación robótica de la extremidad superior. La estrategia de búsqueda se desarrolló accediendo a bibliotecas de revistas médicas indexadas en las bases de datos PubMed/Medline, Scopus, Cochrane Library, Scielo y Lilacs, EmCare, Phisiotherapy Evidence Database (PEDro) mediante los motores de búsqueda de Scopus y del Science Citation Index o WoS y las herramientas Power Query y Scrapy Python; desde el año 2017 hasta el 2024, en idioma español e inglés. Se utilizaron y combinaron los términos: extremidad superior, exoesqueleto, terapia robótica, fisioterapia, rehabilitación. Para una búsqueda más precisa se activaron los filtros: tipo de trabajo (“article”), disciplina (“biomedic sciences” y “medicine”). Un total de 120 manuscritos cumplieron con esos criterios. Fueron elegibles 43, se descartaron estudios duplicados, reportes de casos. 60 no correspondían al tema. Se requieren estudios para continuar la validación de la terapia robótica e incrementar las evidencias que pongan de manifiesto la relevancia de sus potencialidades.
Descargas
Citas
Aibek Niyetkaliyev. (2024). Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation [Data set]. https://ro.uow.edu.au/articles/thesis/Robot_Assisted_Shoulder_Rehabilitation_Biomechanical_Modelling_Design_and_Performance_Evaluation/27669114
Alguacil-Diego, I.-M., Cuesta-Gómez, A., Contreras-González, A.-F., Pont-Esteban, D., Cantalejo-Escobar, D., Sánchez-Urán, M. Á., & Ferre, M. (2021). Validation of a Hybrid Exoskeleton for Upper Limb Rehabilitation. A Preliminary Study. Sensors, 21(21), Article 21. https://doi.org/10.3390/s21217342
Aprile, I., Germanotta, M., Cruciani, A., Loreti, S., Pecchioli, C., Cecchi, F., Montesano, A., Galeri, S., Diverio, M., Falsini, C., Speranza, G., Langone, E., Papadopoulou, D., Padua, L., & Carrozza, M. C. (2020). Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. Journal of Neurologic Physical Therapy, 44(1). https://journals.lww.com/jnpt/fulltext/2020/01000/upper_limb_robotic_rehabilitation_after_stroke__a.2.aspx
Bermúdez, M. D.-C. (2022). Gestión de Gobierno basada en ciencia e innovación: avances y desafíos. Anales de la Academia de Ciencias de Cuba, 12(2), 1235.
Bhagat, N., Yozbatiran, N., Sullivan, J. L., Paranjape, R., Losey, C., Hernandez, Z., Keser, Z., Grossman, R., Francisco, G., O’Malley, M. K., & Contreras-Vidal, J. (2020). A clinical trial to study changes in neural activity and motor recovery following brain-machine interface enabled robot-assisted stroke rehabilitation. medRxiv, 2020.04.26.20077529. https://doi.org/10.1101/2020.04.26.20077529
Buccelli, S., Tessari, F., Fanin, F., De Guglielmo, L., Capitta, G., Piezzo, C., Bruschi, A., Van Son, F., Scarpetta, S., Succi, A., Rossi, P., Maludrottu, S., Barresi, G., Creatini, I., Taglione, E., Laffranchi, M., & De Michieli, L. (2022). A Gravity-Compensated Upper-Limb Exoskeleton for Functional Rehabilitation of the Shoulder Complex. Applied Sciences, 12(7). https://doi.org/10.3390/app12073364
Budhota, A., Chua, K. S. G., Hussain, A., Kager, S., Cherpin, A., Contu, S., Vishwanath, D., Kuah, C. W. K., Ng, C. Y., Yam, L. H. L., Loh, Y. J., Rajeswaran, D. K., Xiang, L., Burdet, E., & Campolo, D. (2021). Robotic Assisted Upper Limb Training Post Stroke: A Randomized Control Trial Using Combinatory Approach Toward Reducing Workforce Demands. Frontiers in Neurology, 12. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.622014
C. He, C. -H. Xiong, Z. -J. Chen, W. Fan, X. -L. Huang, & C. Fu. (2021). Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1795–1805. https://doi.org/10.1109/TNSRE.2021.3107376
Carpinella, I., Lencioni, T., Bowman, T., Bertoni, R., Turolla, A., Ferrarin, M., & Jonsdottir, J. (2020). Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 17(1), 10. https://doi.org/10.1186/s12984-020-0646-1
Chen, J., Black, I., Nichols, D., Chen, T., Sandison, M., Casas, R., & Lum, P. (2020). Clinical Trial of HEXORR II for Robotic Hand Movement Therapy After Stroke. Research Square. https://doi.org/10.21203/rs.3.rs-74894/v1
Chen, Z., Wang, C., Fan, W., Gu, M., Yasin, G., Xiao, S., Huang, J., & Huang, X. (2020). Robot-Assisted Arm Training versus Therapist-Mediated Training after Stroke: A Systematic Review and Meta-Analysis. Journal of Healthcare Engineering, 2020(1), 8810867. https://doi.org/10.1155/2020/8810867
Chen, Z.-J., Gu, M.-H., He, C., Xiong, C.-H., Xu, J., & Huang, X.-L. (2021). Robot-Assisted Arm Training in Stroke Individuals With Unilateral Spatial Neglect: A Pilot Study. Frontiers in Neurology, 12. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2021.691444
Chinmay, B., & Pratik, P. (2022). Robotic and sensor technology for frozen shoulder Rehabilitation. Journal of Pharmaceutical Negative Results, 2970–2974. https://doi.org/10.47750/pnr.2022.13.S06.394
Dalla Gasperina, S., Roveda, L., Pedrocchi, A., Braghin, F., & Gandolla, M. (2021). Review on Patient-Cooperative Control Strategies for Upper-Limb Rehabilitation Exoskeletons. Frontiers in Robotics and AI, 8. https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2021.745018
Dehem, S., Gilliaux, M., Stoquart, G., Detrembleur, C., Jacquemin, G., Palumbo, S., Frederick, A., & Lejeune, T. (2019). Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: A single-blind, randomised, controlled trial. Annals of Physical and Rehabilitation Medicine, 62(5), 313–320. https://doi.org/10.1016/j.rehab.2019.04.002
E. -Y. Chia, Y. -L. Chen, T. -C. Chien, M. -L. Chiang, L. -C. Fu, J. -S. Lai, & L. Lu. (2020). Velocity Field based Active-Assistive Control for Upper Limb Rehabilitation Exoskeleton Robot. 2020 IEEE International Conference on Robotics and Automation (ICRA), 1742–1748. https://doi.org/10.1109/ICRA40945.2020.9196766
Frisoli, A., Barsotti, M., Sotgiu, E., Lamola, G., Procopio, C., & Chisari, C. (2022). A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 19(1), 14. https://doi.org/10.1186/s12984-022-00991-y
Gallagher, J. F., Sivan, M., & Levesley, M. (2022). Making Best Use of Home-Based Rehabilitation Robots. Applied Sciences, 12(4). https://doi.org/10.3390/app12041996
García Tapia*, R. (2020). Influencia de la posición del terapeuta durante el aprendizaje motor por observación de la acción. Estudio piloto: Influence of the therapist’s position during motor learning by observing the action. Pilot study. Revista Terapia Ocupacional Galicia, 17(1), 18–25.
Garlet, A. B., Plentz, R. D. M., Blauth, A. H. E. G., Righi, T. T., Righi, N. C., & Schardong, J. (2022). Reabilitação robótica em pacientes com AVC: protocolo de ensaio clínico randomizado. Fisioterapia e Pesquisa, 28, 483–490. https://doi.org/10.1590/1809-2950/21020028042021
Georgarakis, A.-M., Zimmermann, Y., Wolf, P., Hutter, M., & Riener, R. (2022). Supporting and Stabilizing the Scapulohumeral Rhythm with a Body- or Robot-Powered Orthosis. IEEE Transactions on Medical Robotics and Bionics, 4(3), 729–743. https://doi.org/10.1109/TMRB.2022.3176728
Hamaya, M., Matsubara, T., Noda, T., Teramae, T., & Morimoto, J. (2017). Learning assistive strategies for exoskeleton robots from user-robot physical interaction. User Profiling and Behavior Adaptation for Human-Robot Interaction, 99, 67–76. https://doi.org/10.1016/j.patrec.2017.04.007
Hernández Zayas, M., Bonzon Regalado, J., Montoya Pedrón, A. y Sagaró Zamora, R. (2024). Capsulitis adhesiva del hombro: Aspectos clínicos y rehabilitadores. Arrancada, 24(2), 358-371. https://arrancada.cuaje.edu.cu
Hussein Mohammed Al-Almoodi, H., Zainul Azlan, N., Shahdad, I., & Kamarudzaman, N. (2021). Continuous Passive Motion Machine for Elbow Rehabilitation. International Journal of Robotics and Control Systems; Vol 1, No 3 (2021). https://doi.org/10.31763/ijrcs.v1i3.446
Keeling, A. B., Piitz, M., Semrau, J. A., Hill, M. D., Scott, S. H., & Dukelow, S. P. (2021). Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. Journal of NeuroEngineering and Rehabilitation, 18(1), 10. https://doi.org/10.1186/s12984-021-00804-8
Kim, M.-S., Kim, S. H., Noh, S.-E., Bang, H. J., & Lee, K.-M. (2019). Robotic-Assisted Shoulder Rehabilitation Therapy Effectively Improved Poststroke Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 100(6), 1015–1022. https://doi.org/10.1016/j.apmr.2019.02.003
Lauretti, C., Cordella, F., Ciancio, A. L., Trigili, E., Catalan, J. M., Badesa, F. J., Crea, S., Pagliara, S. M., Sterzi, S., Vitiello, N., Garcia Aracil, N., & Zollo, L. (2018). Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons. Frontiers in Neurorobotics, 12. https://doi.org/10.3389/fnbot.2018.00005
Lin, Y., Qu, Q., Lin, Y., He, J., Zhang, Q., Wang, C., Jiang, Z., Guo, F., & Jia, J. (2021). Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. BioMed Research International, 2021(1), 9972560. https://doi.org/10.1155/2021/9972560
Major, Z. Z., Vaida, C., Major, K. A., Tucan, P., Brusturean, E., Gherman, B., Birlescu, I., Craciunaș, R., Ulinici, I., Simori, G., Banica, A., Pop, N., Burz, A., Carbone, G., & Pisla, D. (2021). Comparative Assessment of Robotic versus Classical Physical Therapy Using Muscle Strength and Ranges of Motion Testing in Neurological Diseases. Journal of Personalized Medicine, 11(10). https://doi.org/10.3390/jpm11100953
Major, Z. Z., Vaida, C., Major, K. A., Tucan, P., Simori, G., Banica, A., Brusturean, E., Burz, A., Craciunas, R., Ulinici, I., Carbone, G., Gherman, B., Birlescu, I., & Pisla, D. (2020). The Impact of Robotic Rehabilitation on the Motor System in Neurological Diseases. A Multimodal Neurophysiological Approach. International Journal of Environmental Research and Public Health, 17(18). https://doi.org/10.3390/ijerph17186557
Nguiadem, C., Raison, M., & Achiche, S. (2020). Motion Planning of Upper-Limb Exoskeleton Robots: A Review. Applied Sciences, 10(21). https://doi.org/10.3390/app10217626
Oña, E. D., Garcia-Haro, J. M., Jardón, A., & Balaguer, C. (2019). Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs. Applied Sciences, 9(13). https://doi.org/10.3390/app9132586
Palazzi, E., Luzi, L., Dimo, E., Meneghetti, M., Vicario, R., Luzia, R. F., Vertechy, R., & Calanca, A. (2022). An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications. Technologies, 10(1). https://doi.org/10.3390/technologies10010022
Qassim, H. M., & Wan Hasan, W. Z. (2020). A Review on Upper Limb Rehabilitation Robots. Applied Sciences, 10(19). https://doi.org/10.3390/app10196976
Righi, M., Magrini, M., Dolciotti, C., & Moroni, D. (2021). A System for Neuromotor Based Rehabilitation on a Passive Robotic Aid. Sensors, 21(9). https://doi.org/10.3390/s21093130
Righi, M., Magrini, M., Dolciotti, C., & Moroni, D. (2022). A Case Study of Upper Limb Robotic-Assisted Therapy Using the Track-Hold Device. Sensors, 22(3). https://doi.org/10.3390/s22031009
Robótica y automática en la escuela cubana. (2020, February 17). Cuba Si. http://www.cubasi.cu/es/cubasi-noticias-cuba-mundo-ultima-hora/item/104599-robotica-y-automatica-en-la-escuela-cubana
Sagaro Zamora, R. M., Zayas, Hernández, S., Marcia, Quezada, M., & Bonzon Regalado, J. (2023). Robotic Therapy and Transcutaneous Electrical Stimulation in the Painful Shoulder Treatment of Hemiplegic Patients. Revista Cubana de Medicina; Vol. 62, No. 2 (2023): Abril-Junio, 62, e3125.
Serrezuela, R. R., Quezada, M. T., Zayas, M. H., Pedrón, A. M., Hermosilla, D. M., & Zamora, R. S. (2020). Robotic therapy for the hemiplegic shoulder pain: a pilot study. Journal of NeuroEngineering and Rehabilitation, 17(1), 54. https://doi.org/10.1186/s12984-020-00674-6
Takebayashi, T., Takahashi, K., Okita, Y., Kubo, H., Hachisuka, K., & Domen, K. (2022). Impact of the robotic-assistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: sub-analysis of a randomized clinical trial. Journal of NeuroEngineering and Rehabilitation, 19(1), 25. https://doi.org/10.1186/s12984-022-00986-9
Terranova, T. T., Simis, M., Santos, A. C. A., Alfieri, F. M., Imamura, M., Fregni, F., & Battistella, L. R. (2021). Robot-Assisted Therapy and Constraint-Induced Movement Therapy for Motor Recovery in Stroke: Results From a Randomized Clinical Trial. Frontiers in Neurorobotics, 15. https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.684019
Veerbeek, J. M., Langbroek-Amersfoort, A. C., van Wegen, E. E. H., Meskers, C. G. M., & Kwakkel, G. (2017). Effects of Robot-Assisted Therapy for the Upper Limb After Stroke: A Systematic Review and Meta-analysis. Neurorehabilitation and Neural Repair, 31(2), 107–121. https://doi.org/10.1177/1545968316666957
Wu, C.-J., Ting, H., Lin, C.-C., Chen, Y.-C., Chao, M.-C., & Lee, S.-D. (2021). Efficacy of Joint Mobilization Apparatus in Treating Frozen Shoulder. Applied Sciences, 11(9), Article 9. https://doi.org/10.3390/app11094184
Zhang, Y., Liu, X., Qiao, X., & Fan, Y. (2022). Trending Topics in Research on Rehabilitation Robots during the Last Two Decades: A Bibliometric Analysis. Machines, 10(11). https://doi.org/10.3390/machines10111061
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Marcia Sandra Hernández Zayas, Jorge Bonzon Regalado, Roberto Sagaró Zamora, Mauricio Torres Quesada

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Esta revista proporciona un acceso abierto inmediato a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global de conocimiento.
Se aceptan además, trabajos de arbitraje abierto (pre-print), preferentemente desde Research Gate.